

Schriftliche Abiturprüfung 2020 im dritten Prüfungsfach Grundkurs Mathematik (TR)

Dienstag, 5. Mai 2020, 9:00 Uhr

Unterlagen für Referentinnen und Referentinnen und Korreferentinnen und Korreferenten

- Diese Unterlagen sind nicht für Schülerinnen und Schüler bestimmt -

Diese Unterlagen enthalten ...

- · Allgemeines,
- die Bewertung der Prüfungsleistung und Lösungsskizzen zu den Aufgaben,
- keine Aufgabenstellungen Ihre Exemplare entnehmen Sie bitte den Schüleraufgaben ,
- einen Protokollbogen zur Auswahl der Aufgaben für die Prüfungsakten Ihrer Schule,
- einen Rückmeldebogen für die Zentralabiturkommission zur Auswahl der Aufgaben.

Allgemeines

- Prüfen Sie die Prüfungsaufgaben vor der Aushändigung an die Schülerinnen und Schüler auf ihre Vollständigkeit und formale und inhaltliche Korrektheit und ergänzen Sie sie gegebenenfalls. Bei nicht ausreichender Anzahl erstellen Sie entsprechende Kopien vor Ort. Bei einem schwerwiegenden inhaltlichen Fehler informieren Sie sofort die Senatorin für Kinder und Bildung über die Hotline (0421...) von 7.00 bis 9.30 Uhr. Die von der Senatorin für Kinder und Bildung vorgenommene Korrektur gibt die Schule sofort an die für die schriftliche Prüfung zuständige Lehrkraft weiter.
- Teil 1 besteht aus den "hilfsmittelfreien" Aufgaben:

Die Bearbeitungszeit beträgt 45 Minuten.

Erlaubte Hilfsmittel: Zeichengerät und Rechtschreiblexikon.

Für die Bearbeitung dieser Aufgaben sind Taschenrechner und Formelsammlung **NICHT** erlaubt.

Teil 2 beinhaltet die Aufgaben mit Hilfsmitteln.

Die Bearbeitungszeit beträgt 180 Minuten.

Erlaubte Hilfsmittel: Nicht programmierbarer wissenschaftlicher Taschenrechner, Formelsammlung, Zeichengerät, Rechtschreiblexikon.

Auswahl der Aufgaben:

Wählen Sie gemeinsam mit Ihrer Korreferentin / Ihrem Korreferenten vorab für den "hilfsmittelfreien" Teil aus den fünf vorgelegten Aufgaben vier zur Bearbeitung aus. Diese kommen aus den Themenbereichen **Analysis**, **Stochastik** sowie **Lineare Algebra** / **Analytische Geometrie**. Im Themenbereich Lineare Algebra / Analytische Geometrie werden Aufgaben vorgelegt, die ihren Schwerpunkt in einem der beiden Themen haben. Der Fachprüfungsausschuss wählt in diesem Themenbereich den Schwerpunkt Lineare Algebra oder Analytische Geometrie.

MAT-GK-TR-H-L Seite 1 von 13

- Für den zweiten Teil der Prüfung, den Aufgaben mit Hilfsmitteln, kommen die Aufgaben aus den Themenbereichen Analysis, Stochastik sowie Lineare Algebra / Analytische Geometrie. Im Themenbereich Lineare Algebra / Analytische Geometrie werden Aufgaben vorgelegt, die ihren Schwerpunkt jeweils in einem der beiden Themen haben. Den Schülerinnen und Schülern werden drei Aufgaben vorgelegt- Der Fachprüfungsausschuss wählt in den Themenbereichen Analysis sowie Lineare Algebra / Analytische Geometrie jeweils eine der beiden vorgelegten Aufgaben aus, die Aufgabe aus dem Themenbereich Stochastik ist verpflichtend. Kommt es zu keiner Einigung, bestimmt die/der Vorsitzende des Fachprüfungsausschusses die Auswahl der Aufgaben (§ 10 Abs. 2 Nr. 1 AP-V). Protokollieren Sie auf dem beigefügten Protokollformular, welche Aufgaben Sie gewählt haben (Prüferin/Prüfer und Korreferentin/Korreferent und ggf. auch die/der Vorsitzende des Fachprüfungsausschusses unterschreiben das Protokoll).
- Füllen Sie bitte für die Zentralabiturkommission Mathematik den beigefügten Rückmeldebogen zur Auswahl der Aufgaben aus und schicken ihn an die dort genannte Adresse.
- Fragen Sie vor Verteilung der Aufgaben nach der Arbeitsfähigkeit der Schülerinnen und Schüler und weisen Sie diese auf die Regelungen des § 5 AP-V (Täuschung und Behinderung) hin.
- Machen Sie die Schülerinnen und Schüler auf die Arbeitshinweise aufmerksam, die am Anfang ihrer Unterlagen für die Prüfung stehen. Geben Sie ihnen ggf. die nötigen Angaben zur Schulnummer sowie zur genauen Kursbezeichnung.

Die Bewertung der Prüfungsleistung

Die Lösungsskizze stellt eine Lösungsvariante dar; andere gleichwertige Lösungen sind entsprechend zu bewerten. Die Bewertungsanteile pro Teilaufgabe sind obligatorisch.

Für die Festlegung der Gesamtleistung werden den erzielten Bewertungseinheiten die entsprechenden Notenstufen gemäß folgender Tabelle zugeordnet.

Ab %	Punkte	Note	Ab %	Punkte	Note
95	15	1+	55	07	3-
90	14	1	50	06	4+
85	13	1-	45	05	4
80	12	2+	40	04	4-
75	11	2	33	03	5+
70	10	2-	27	02	5
65	09	3+	20	01	5-
60	08	3	0	00	6

Teil 1

Erwartungshorizont und Bewertung nach Anforderungsbereichen

	Läouppokizzo			ng
	Lösungsskizze	I	II	III
Au	Aufgabe 1			
а	$f'(x) = 3x^2 - 14$; $f''(x) = 6x$; $f'''(x) = 6$.	3		
	Aus $f''(x) = 0 \Leftrightarrow 6x = 0 \Leftrightarrow x = 0$ und $f'''(0) = 6 \neq 0$ folgt, dass an der Stelle 0 ein Wendepunkt von f liegt.			
b	$F_c(x) = \frac{1}{4} \cdot x^4 - 7x^2 - 5x + c, \ c \in IR$		2	
	Mit $F_c(2) = 4 - 28 - 10 + c = -30$ folgt $.c = 4$.			
Ve	rteilung der insgesamt 5 Bewertungseinheiten auf die Anforderungsbereiche	3	2	

Aufgabe 2			
$f(x) = ax^2 + bx + c$; $f'(x) = 2ax + b$	2	3	
Es gilt $f(0) = 0 \Leftrightarrow c = 0$. Damit liefern $f(2) = 4 \cdot 2 - 2 = 6$ und $f'(2) = 4$ das folgende Gleichungssystem:			
I $4a + 2b = 6$ II $4a + b = 4$			
Aus I und II ergibt sich $b = 2$ und damit $a = \frac{1}{2}$.			
Verteilung der insgesamt 5 Bewertungseinheiten auf die Anforderungsbereiche			

Au	Aufgabe 3			
а	Mit $n_X \cdot p_X = 2 \Leftrightarrow p_X = \frac{1}{2}$ ergibt sich $P(X = 4) = \frac{1}{16}$.		2	
b	Die Wahrscheinlichkeit dafür, dass mindestens ein Treffer erzielt wird, ist kleiner als 0,3. Bestimmen Sie alle Werte, die für $n_{\rm Y}$ infrage kommen.			3
Ve	Verteilung der insgesamt 5 Bewertungseinheiten auf die Anforderungsbereiche			3

Läaungaskizza		wertu	ıng
Lösungsskizze	I	II	III
Aufgabe 4			
Die Gerade ist z. B. gegeben durch die Gleichung $g: \vec{x} = \begin{pmatrix} 4 \\ 0 \\ 5 \end{pmatrix} + k \cdot \begin{pmatrix} -3 \\ 6 \\ -3 \end{pmatrix}.$ Die rechte Seitenwand liegt in der Ebene mit der Gleichung $x_2 = 7$. Mit $7 = 0 + 6 \cdot k \text{erhält man } k = \frac{7}{6} \text{. Der Schatten der Spitze hat damit den Ortsvektor}$ $tor \begin{pmatrix} 4 \\ 0 \\ 5 \end{pmatrix} + \frac{7}{6} \cdot \begin{pmatrix} -3 \\ 6 \\ -3 \end{pmatrix} = \begin{pmatrix} 0,5 \\ 7 \\ 1,5 \end{pmatrix}.$ Da $0 < 0,5 < 4$ und $0 < 1,5 < 3$ gilt, liegt der Schatten auf der rechten Seitenwand.	2	3	
Verteilung der insgesamt 5 Bewertungseinheiten auf die Anforderungsbereiche	2	3	

Au	Aufgabe 5			
а	$a = 2$, $b = -5$, $c = -\frac{1}{10}$	1	1	
b	$A \cdot \vec{v} = \vec{v}$ liefert das folgende Gleichungssystem:	2	1	
	$I \frac{1}{2}y = x \qquad \qquad II -\frac{1}{5}z = y \qquad \qquad III -10x = z$ Eine Lösung ist $x = -1$, $y = -2$ und $z = 10$.			
Ve	Verteilung der insgesamt 5 Bewertungseinheiten auf die Anforderungsbereiche			

Teil 2 – Aufgabe 1 Erwartungshorizont und Bewertung nach Anforderungsbereichen

		Lösungsskizze	I	II	Ш
1	а	Aus den beschriebenen Bedingungen ergibt sich: I: $f(0) = 0$; II: $f'(0) = 0$; III: $f(3) = -2$; IV: $f'(3) = -4$		5	
		Mit $f(x) = ax^3 + bx^2 + cx + d$ und $f'(x) = 3ax^2 + 2bx + c$ erhält man aus I d=0 und aus II $c = 0$. Damit folgt aus III $27a + 9b = -2$ und aus IV $27a + 6b = -4$, also $a = -\frac{8}{27}$ und $b = \frac{2}{3}$.			
	b	$f'(x) = -\frac{8}{9}x^2 + \frac{4}{3}x$ $f'(x) = 0 \Leftrightarrow x \cdot \left(-\frac{8}{9}x + \frac{4}{3}\right) = 0 \Leftrightarrow x = 0 \lor x = \frac{3}{2}$ Mit $f\left(\frac{3}{2}\right) = \frac{1}{2}$ hat der Graph von f den Hochpunkt $\left(\frac{3}{2} \mid \frac{1}{2}\right)$. Skalierung siehe rechts. Der Wendepunkt hat die Koordinaten $\left(\frac{3}{4} \mid \frac{1}{4}\right)$ und die Steigung berechnet sich durch $f'\left(\frac{3}{4}\right) = 0,5$.	7		
	С	$\int_{0}^{2,25} t(x) - f(x) dx \approx 3,16$		3	
		$f'(x) = -\frac{3}{2} \iff -\frac{8}{9}x^2 + \frac{4}{3}x = -\frac{3}{2} \iff x = -\frac{3}{4} \lor x = \frac{9}{4}$		3	
		Bei $x = -\frac{3}{4}$ hat G_f eine Tangente mit gleicher Steigung.			
		Ansatz für die Funktionsgleichung der zweiten Tangente: $t_2(x) = -\frac{3}{2} \cdot x + c$			
		Es gilt $f\left(-\frac{3}{4}\right) = \frac{1}{2}$, also folgt $t_2\left(-\frac{3}{4}\right) = -\frac{3}{2} \cdot \left(-\frac{3}{4}\right) + c = \frac{1}{2}$ und damit $c = -\frac{5}{8}$.			

		Lösungsskizze	I	II	≡
	е	Veranschaulichung z. B.:			5
		A(3 2)			
		/ i			
		$\sqrt{(3-p)^2+(2-f(p))^2}$			
		2-f(p)			
		P(p f(p))			
		3-p			
		G _f x,			
		Abstandsformel mit Hilfe des Satzes von Pythagoras:			
		dist(P;A) = $\sqrt{(3-p)^2 + (2-f(p))^2}$			
		Statt der Koordinaten von p kann nun ein beliebiger Punkt $X(x f(x))$ des Gra-			
		phen in die Abstandformel eingesetzt werden, dies liefert die Funktion d mit			
		$d(x) = \sqrt{(3-x)^2 + (2-f(x))^2} .$			
		Die Stelle des Tiefpunkts der Funktion d ist die x-Koordinate des gesuchten Punktes und der zugehörige Funktionswert von f die y-Koordinate.			
2	а	Der Anfangswert ist $c = 317$.		4	
		$h(25) = 317 \cdot e^{k \cdot 25} = 346 \Rightarrow e^{k \cdot 25} = \frac{346}{317} \Rightarrow k = \frac{ln(\frac{346}{317})}{25} \approx 0,0035$			
		h(50) ≈ 378			
		Der Durchschnittswert der CO ₂ -Konzentration für das Jahr 2010 beträgt 380			
		und ist ungefähr so groß wie der Wert, der sich bei einer unveränderten Fortsetzung des exponentiellen Wachstums ergeben hätte. Daher ist diese Model-			
	-	lierung auch über den Zeitraum bis 1985 hinaus sinnvoll.			
	b	Der jährliche prozentuale Zuwachs beträgt 0,4 Prozent.	3		
		Der Jahresdurchschnitt beträgt nach dem Modell für das Jahr 2020 mit h(60) ≈ 403 ungefähr 403 ppm.			
		Der gesuchte Funktionsterm ist 317·1,004 t+ 20.			
	ပ	Der Wert entspricht dem mittleren Jahresdurchschnitt der CO ₂ -Konzentration gemittelt über die Jahre von 1985 bis 2010.			2
	Ve	erteilung der insgesamt 32 Bewertungseinheiten auf die Anforderungsbereiche	10	15	7

Teil 2 – Aufgabe 2 Erwartungshorizont und Bewertung nach Anforderungsbereichen

		Lösungsskizze	ı	II	Ш
1	а	Nullstellen: 0 und 3.	4		
		Hochpunkt:			
		Für $x \ge 0$ liefert $f'(x) = 0 \iff x^2 - x - 3 = 0$: $x = \frac{1 + \sqrt{13}}{2} \approx 2,3$			
		$y = f\left(\frac{1+\sqrt{13}}{2}\right) \approx 1,6$			
	b	$\lim_{x\to +\infty} f(x) = -\infty. \text{ Wegen } \lim_{x\to -\infty} f(x) = \lim_{x\to -\infty} e^x = 0 \text{ n\"{a}hert sich der Graph von f f\"{u}r}$ $x\to -\infty \text{ asymptotisch der x-Achse.}$		3	
	С	$y = \frac{1}{2}x + \frac{1}{2}$	3		
	d	$F'(x) = -0.1 \cdot (2x - 5) \cdot e^{x} - 0.1 \cdot (x^{2} - 5x + 5) \cdot e^{x} = -0.1 \cdot (x^{2} - 3x) \cdot e^{x}$ $= 0.1 \cdot x \cdot (3 - x) \cdot e^{x}$		4	
	е	$A = \int_{0}^{3} f(x) dx = F(3) - F(0) = 0, 1 \cdot (e^{3} + 5) \approx 2, 5$	3		
	f	Für $x>3$ sind die Funktionswerte von f negativ und es gilt $\lim_{x\to +\infty} f(x) = -\infty$. Betrachtet man die Flächenstücke, die der Graph von f im Integrationsbereich mit der x-Achse und der Geraden mit der Gleichung $x=a$ einschließt, so gibt es folglich einen Wert von a, für den der Inhalt des oberhalb der x-Achse liegenden Flächenstücks ebenso groß ist wie der Inhalt des unterhalb liegenden Flächenstücks.		3	

		Lösungsskizze	ı	П	Ш
	g	Die Terme aller Stammfunktionen H von f haben die Form $H(x) = F(x) + c$.			5
		Es gilt $H'(x) = f(x)$ und damit $H'(0) = 0$, $H'(x) < 0$ für $x < 0$ und $H'(x) > 0$ für $x > 0$. $H(0) = 0 \Leftrightarrow F(0) + c = 0 \Leftrightarrow c = \frac{1}{2}$			
	h	$g(x) = -f(x) \Leftrightarrow b - x = (3 - x) \Leftrightarrow b = 3$			2
2		Die Gerade h hat die Gleichung $y=0,5\cdot x$ und die parallele Gerade g hat die Gleichung $y=0,5\cdot x+10$. Die gesuchte Funktion ist v mit $v(x)=a\cdot x^3+b\cdot x^2+c\cdot x+d$. Den Angaben im Text entnimmt man $v(0)=10$; $v'(0)=0,5$; $v(20)=10$; $v'(20)=0,5$. Durch Lösen des LGS erhält man $a=\frac{1}{400}$; $b=-\frac{3}{40}$; $c=0,5$; $d=10$ und damit $v(x)=\frac{1}{400}x^3-\frac{3}{40}x^2+0,5x+10$.		5	
	Ve	erteilung der insgesamt 32 Bewertungseinheiten auf die Anforderungsbereiche	10	15	7

Teil 2 – Aufgabe 3 Erwartungshorizont und Bewertung nach Anforderungsbereichen

		Lösungsskizze	-	II	Ш
1	а	$P_{0,29}^{40} (12 \le X \le 40) \approx 50,4\%$	2		
	b	Die Wahrscheinlichkeit dafür, dass von den ausgewählten Beschäftigten höchstens zehn weiblich sind, beträgt etwa 36 %.		3	
	С	$P_{0,29}^{40}(X=10) \approx 12,3\%$	2		
	d	$E(X) = 40 \cdot 0,29 = 11,6$ Damit hat die Wahrscheinlichkeitsverteilung von X ihren größten Wert für eine der beiden natürlichen Zahlen, die 11,6 benachbart sind.		3	
2	а	$x = 100\% - 10.5\% = 89.5\%$, $y = 0.29 \cdot 0.035 \approx 0.01$	3		
	b	x ist die Wahrscheinlichkeit dafür, dass eine nicht weibliche befragte Person dieser Abteilung angibt, nicht unzufrieden zu sein. y ist die Wahrscheinlichkeit dafür, dass eine befragte Person dieser Abteilung weiblich ist und angibt, unzufrieden zu sein.		3	
	С	$P(\overline{w} \mid u) = \frac{0.71 \cdot 0.105}{0.71 \cdot 0.105 + 0.29 \cdot 0.035} \approx 88.0\%$		3	
	d	Bezeichnet man den Anteil der weiblichen Personen in dieser Abteilung mit a, so gilt:			5
	Ve	erteilung der insgesamt 24 Bewertungseinheiten auf die Anforderungsbereiche	7	12	5

Teil 2 – Aufgabe 4 Erwartungshorizont und Bewertung nach Anforderungsbereichen

	Lösungsskizze	ı	п	Ш
а	Die Punkte R und Q unterscheiden sich nur in der x ₁ -Koordinate, daher ist die	3		
	Strecke RQ parallel zur x ₁ -Achse.			
	Wegen $\overrightarrow{OR} = \overrightarrow{PQ} = \begin{pmatrix} 0 \\ -12 \\ 9 \end{pmatrix}$ stehen \overrightarrow{OR} und \overrightarrow{PQ} senkrecht zur x_1 -Achse.			
	Damit ist das Viereck OPQR ein Rechteck.			
b	$ \overrightarrow{OP} \cdot \overrightarrow{OR} = \frac{25}{2} \cdot \sqrt{12^2 + 9^2} = 187.5$, d. h. der Flächeninhalt beträgt etwa 1,9 m ² .	2		
С	$E: \vec{x} = \overrightarrow{OO} + r \cdot \overrightarrow{OP} + s \cdot \overrightarrow{OR} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} -12,5 \\ 0 \\ 0 \end{pmatrix} + s \cdot \begin{pmatrix} 0 \\ -12 \\ 9 \end{pmatrix} \text{ mit } r,s \in \mathbb{R}.$	2		
d	$\cos\alpha = \frac{\begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}{\begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}}, \ d. \ h. \ \alpha \approx 36,9^{\circ} \ .$		3	
е	Die erste Koordinate von L ergibt sich aus dem Mittel der ersten Koordinaten von R und Q und die letzte Koordinate von L aus der Höhe von 60 cm.		3	
	Insgesamt führt dies zum Ansatz L $\left(-6,25\right $ I $_{2}$ $\left 6\right)$.			
	Das Einsetzen dieser Koordinaten in die Koordinatenform der Ebene E liefert $3 \cdot l_2 + 4 \cdot 6 = 0$ und daraus folgt $l_2 = -8$, also $L(-6,25 -8 6)$.			
f	Der Punkt S, an dem die Stütze an der geneigten Fläche befestigt ist, ergibt sich als Durchstoßpunkt der Geraden g mit der Ebene E. Die einzelnen Koordinatengleichungen der Geraden g in die Koordinatenform der Ebene E eingesetzt, ergibt		6	
	$3 \cdot (-10 + r) + 4 \cdot (3r) = 0 \Leftrightarrow r = 2$			
	Wird $r=2$ in die Gleichung der Gerade g eingesetzt, so liefert dies die Koordinaten des gesuchten Punktes: $S(-6 \mid -8 \mid 6)$.			
	$\left \overrightarrow{LS} \right = \begin{vmatrix} -6 \\ -8 \\ 6 \end{vmatrix} - \begin{pmatrix} -25/4 \\ -8 \\ 6 \end{vmatrix} = \begin{vmatrix} 1/4 \\ 0 \\ 0 \end{vmatrix} = 0,25$			
	Der Abstand von L und S ist damit 2,5 Zentimeter und der Mindestabstand von 5 Zentimetern wird nicht eingehalten.			

	Lösungsskizze	I	II	Ш
g	Die Bewegungsrichtung des Balles vor dem Auftreffen in Punkt K ist gleich der Projektion des Vektors \vec{v} auf die x_1x_2 -Ebene. Somit rollt der Ball nach dem Abschlag entlang einer Geraden h mit			5
	$h: \vec{x} = \begin{pmatrix} -5 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ -8 \\ 0 \end{pmatrix}, \ r \in \mathbb{R}.$			
	Da der Abschlagpunkt noch der Bedingung $x_2 = 20$ genügen muss, ergibt sich daraus			
	$\begin{pmatrix} -5 \\ 0 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 3 \\ -8 \\ 0 \end{pmatrix} = \begin{pmatrix} t_1 \\ 20 \\ t_3 \end{pmatrix}.$			
	Aus der mittleren Gleichung folgt $r = -2.5$ und damit $T(-12.5 \mid 20 \mid 0)$.			
	Verteilung der insgesamt 24 Bewertungseinheiten auf die Anforderungsbereiche	7	12	5

Teil 2 – Aufgabe 5 Erwartungshorizont und Bewertung nach Anforderungsbereichen

		Lösungsskizze	ı	II	Ш
1	а	Jährlich bringen die alten Tiere im Mittel jeweils zwei weibliche Nachkommen zur Welt.	2		
		80 % der jungen Tiere überleben das zweite Lebensjahr.			
	b	$L^2 = \begin{pmatrix} 0.75 & 1.6 & 1.4 \\ 0 & 0.75 & 1.5 \\ 0.6 & 0.56 & 0.49 \end{pmatrix}.$		3	
		Der Eintrag in der ersten Zeile und dritten Spalte ergibt sich mit der Rechnung: $0\cdot 2+1\cdot 0+2\cdot 0,7=1,4$.			
		Der Matrixeintrag 0,6 gibt an, dass sich nur 60% der unreifen Tiere innerhalb von 2 Jahren weiter zu alten Tieren entwickeln.			
	С	$L^{2}*\begin{pmatrix}24\\46\\6\end{pmatrix}*\begin{pmatrix}100\\44\\43\end{pmatrix}; \text{ d.h. zwei Jahre nach Beobachtungsbeginn besteht die Zusammensetzung aus etwa 100 unreifen, 44 jungen und 43 alten Tieren.}$ $L^{-1}*\begin{pmatrix}24\\46\\6\end{pmatrix}*\begin{pmatrix}61\\-5\\15\end{pmatrix}; \text{ eine negative Anzahl von Tieren ist im Sachzusammenhang}$	3		
		nicht sinnvoll.			
	d	$L*\begin{bmatrix} u\\ j\\ a \end{bmatrix} = 1,5 \cdot \begin{bmatrix} u\\ j\\ a \end{bmatrix} \text{ liefert } \begin{bmatrix} u\\ j\\ a \end{bmatrix} = c \cdot \begin{bmatrix} 2\\1\\1 \end{bmatrix} \text{ mit } c \in IN \setminus \{0\} \text{ . Bei den Zusammensetzungen ist das Verhältnis der Anzahlen der unreifen, jungen und alten Tiere 2:1:1.} $ Alternative Beschreibungen sind möglich!		4	
2	а	Eintrag: 2k		2	
		Bedeutung: Pro altem Tier gibt es von einem Frühjahr zum nächsten 2k zusätzliche unreife Tiere.			
		Begründung: Von Frühjahr bis Herbst bringen die alten Tiere im Mittel jeweils zwei weibliche Nachkommen zur Welt, von denen der Anteil k bis zum folgenden Frühjahr überlebt.			
	b	Für $k = 0.8$ gilt: $(N*M)^2*\begin{pmatrix} 225\\225\\225 \end{pmatrix} = \begin{pmatrix} 630\\360\\325 \end{pmatrix}$; d.h. die Zusammensetzung besteht	2		
		zwei Jahre später aus 630 unreifen, 360 jungen und 325 alten Tieren.			
	С	$N*M*\begin{pmatrix} u\\100\\225 \end{pmatrix} = \begin{pmatrix} u\\100\\225 \end{pmatrix} \text{ liefert } k = \frac{3}{11} \text{ und } \begin{pmatrix} u\\j\\a \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \cdot 100\\100\\225 \end{pmatrix}; \text{ d.h. die zugehörige Zu-}$		3	
		sammensetzung besteht aus 150 unreifen, 100 jungen und 225 alten Tieren.			

	Lösungsskizze	ı	=	Ш
d	Für k=0,5 gilt N*M*N* $\begin{pmatrix} u \\ j \\ a \end{pmatrix} = \begin{pmatrix} 225 \\ 225 \\ 225 \end{pmatrix} \Leftrightarrow \begin{pmatrix} u \\ j \\ a \end{pmatrix} = \begin{pmatrix} 675 \\ 216 \\ 162 \end{pmatrix}$; d.h. die zugehörige Zusam-			5
	mensetzung bestand aus 675 unreifen, 216 jungen und 162 alten Tieren.			
Ve	rteilung der insgesamt 24 Bewertungseinheiten auf die Anforderungsbereiche	7	12	5

Kursbezeichnung:

Name:

Schriftliche Abiturprüfung 2020

Grundkurs Mathematik

Dienstag, 5. Mai 2020, 9:00 Uhr

Unterlagen für die Prüfungsteilnehmerinnen und -teilnehmer

- Teil 1: "hilfsmittelfreie" Aufgaben -

Allgemeine Arbeitshinweise

- Tragen Sie bitte oben rechts auf diesem Blatt und auf den nachfolgenden Aufgabenblättern die Schulnummer, die schulinterne Kursbezeichnung und Ihren Namen ein.
- Schreiben Sie auf alle Entwurfsblätter (Kladde) und die Reinschrift Ihren Namen.
- Versehen Sie Ihre Reinschrift mit Seitenzahlen.

Fachspezifische Arbeitshinweise

- Die Arbeitszeit für diesen Teil beträgt 45 Minuten.
- Erlaubte Hilfsmittel: Zeichengerät, Rechtschreiblexikon.

Aufgaben

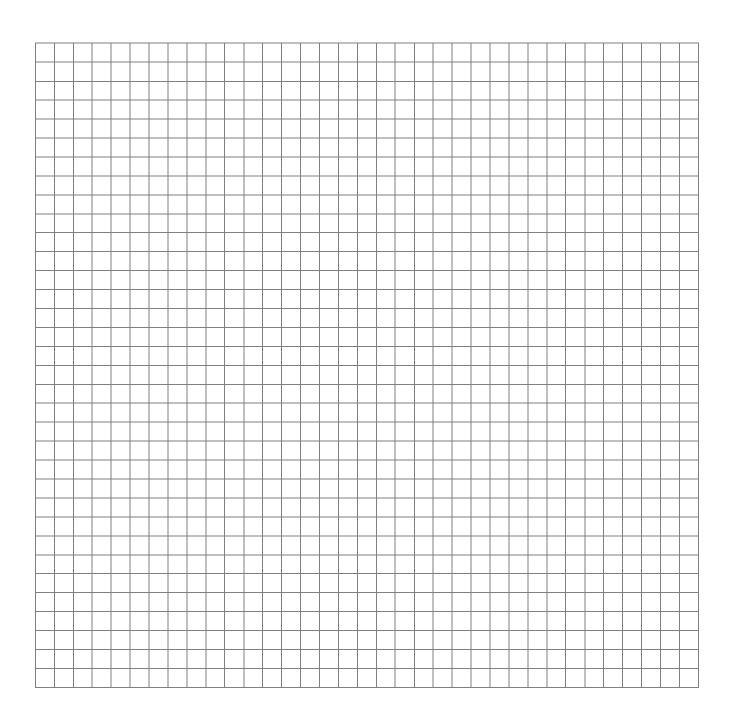
- Sie erhalten vier Aufgaben zur Bearbeitung.
- Überprüfen Sie bitte zu Beginn die Vollständigkeit der vorgelegten Aufgaben (Anzahl der Blätter, Anlagen, ...).
- Vermerken Sie in Ihrer Reinschrift, welche Aufgabe Sie jeweils bearbeiten.

SNR:

Kursbezeichnung:

Name:

Teil 1 - Aufgabe 1 - zum Themenbereich Analysis


Gegeben ist die in IR definierte Funktion f mit $f(x) = x^3 - 14x - 5$.

- a Zeigen Sie, dass der Graph von f an der Stelle 0 einen Wendepunkt hat.
- **b** Bestimmen Sie den Term derjenigen Stammfunktion von f, deren Graph durch den Punkt (2 | -30) verläuft.

ΒE

3

2

SNR:

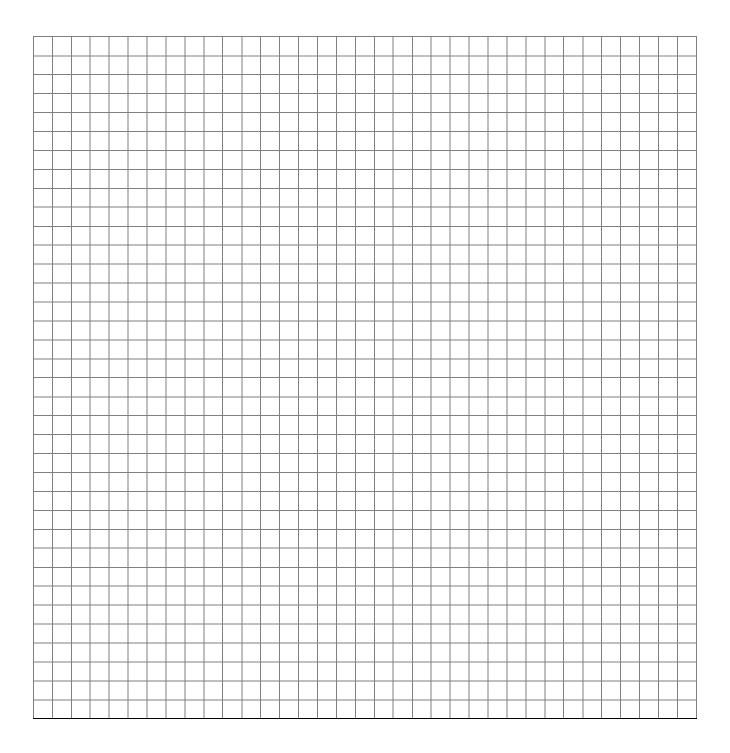
Kursbezeichnung:

Name:

																							\dashv	\neg									\neg
\vdash	\vdash	-	-	-	\vdash	-	\vdash	-		\dashv	\dashv	\dashv	-	-	-	-	\dashv	\dashv	\dashv	-	-	-	\dashv	\dashv	\dashv	\dashv	-		-	\rightarrow	\dashv	\rightarrow	\dashv
																																\neg	
				_										_							_	-	\dashv	-	\dashv	\dashv					-	\dashv	
																							\neg			\neg						\neg	\neg
-	\vdash		-	_	\vdash		\vdash			\dashv	\rightarrow	\dashv	-	_	-	-	\dashv	\rightarrow	\rightarrow	-	_	\rightarrow	\dashv	\dashv	\rightarrow	\dashv	-		-	\rightarrow	\rightarrow	\rightarrow	-
																									\dashv							\dashv	\neg
<u> </u>	Ш		-		\vdash		\vdash							_	-							\rightarrow	_	_	\rightarrow	_	-		-	\rightarrow	\rightarrow	\rightarrow	
																							\neg	\neg	\neg	\neg				\neg	\neg	\neg	
	\vdash	\vdash	\dashv	-	\vdash	\vdash	\vdash	\vdash	\vdash				\dashv	-	\dashv	\dashv				\dashv	-	+	\dashv	\dashv	\dashv	\dashv	\dashv	\vdash	\dashv	\dashv	\dashv	+	-
_	Ш				Щ		Щ															_	_	_	_	_		\square		_	_	\dashv	
																							\neg							\neg	\neg	\neg	\neg
\vdash	Н	\vdash	\dashv		\vdash	\vdash	\vdash	\vdash	\vdash				\dashv		\dashv	\dashv				\dashv		+	\dashv	\dashv	\dashv	-	\dashv	\vdash	\dashv	\dashv	\dashv	\dashv	-
_	Ш	Ш			Ш	Ш	Ш	Ш	Ш													_			_							\dashv	
																							\neg										\neg
\vdash	\vdash	\vdash	\dashv	-	\vdash	\vdash	\vdash	\vdash	\vdash	-	-	-	\dashv	-	\dashv	\dashv	-	-	-	\dashv	-	+	\dashv	\dashv	\dashv	-	\dashv	\vdash	\dashv	\dashv	\dashv	\dashv	-
																									\neg							\neg	
-				_										_							_	-	\dashv	-	\dashv	\dashv					-	\dashv	
																									\neg							\neg	
				_										_							_	-	\dashv	-	\dashv	\dashv					-	\dashv	
																									\neg							\neg	
				_										_							_	-	\dashv	-	\dashv	\dashv					-	\dashv	
	П																						\neg		\dashv					\neg	\neg	\dashv	\neg
\vdash	\vdash	\vdash		-	\vdash	\vdash	\vdash	\vdash	\vdash				-	-		-				-	-	+	-	\dashv	\dashv	-		\vdash		\dashv	\dashv	\dashv	-
_	Ш				Ш		Ш																										
	П																						\neg		\neg					\neg	\neg	\neg	\neg
	\vdash	\vdash	\dashv	-	$\vdash\vdash$	\vdash	$\vdash\vdash$	\vdash	$\vdash\vdash$	\dashv	\dashv	\dashv	\dashv	-	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	-	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\vdash	\dashv	\dashv	\dashv	\dashv	-
	Ш				Ш		Ш																										
	П																						\neg		\dashv					\neg	\neg	\dashv	\neg
\vdash	Н	\vdash	\dashv		\vdash	\vdash	\vdash	\vdash	\vdash				\dashv		\dashv	\dashv				\dashv		+	\dashv	\dashv	\dashv	-	\dashv	\vdash	\dashv	\dashv	\dashv	\dashv	-
	Ш				Ш		Ш																										
																							\neg		\neg					\neg	\neg	\neg	\neg
\vdash	Н	\vdash	\dashv		\vdash	\vdash	\vdash	\vdash	\vdash				\dashv		\dashv	\dashv				\dashv		+	\dashv	\dashv	\dashv	-	\dashv	\vdash	\dashv	\dashv	\dashv	\dashv	-
	Ш	Ш			Ш	Ш	Ш	Ш	Ш														_		_					_	_	$ \bot $	
																						\neg			\dashv							\dashv	\neg
\vdash	Н	\vdash	\dashv	-	\vdash	\vdash	\vdash	\vdash	\vdash	-	-	-	\dashv	-	\dashv	\dashv	-	-	-	\dashv	-	+	\dashv	\dashv	+	-	\dashv	\vdash	\dashv	\dashv	\dashv	\dashv	\dashv
	Ш				Ш		Ш																										
	П																					\neg			\dashv							\dashv	\neg
\vdash	\vdash	\vdash	\dashv	-	$\vdash\vdash$	\vdash	$\vdash\vdash$	\vdash	\vdash	\dashv	\dashv	\dashv	\dashv	-	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	-	+	\dashv	\dashv	\dashv	\dashv	\dashv	\vdash	\dashv	\dashv	\dashv	\dashv	-

SNR:

Kursbezeichnung:


Name:

Teil 1 - Aufgabe 2 - zum Themenbereich Analysis

BE

Der Graph einer quadratischen Funktion f verläuft durch den Koordinatenursprung. Die Tangente an diesen Graphen an der Stelle 2 hat die Gleichung y = 4x - 2. Bestimmen Sie einen Funktionsterm von f.

5

SNR: Kursbezeichnung:

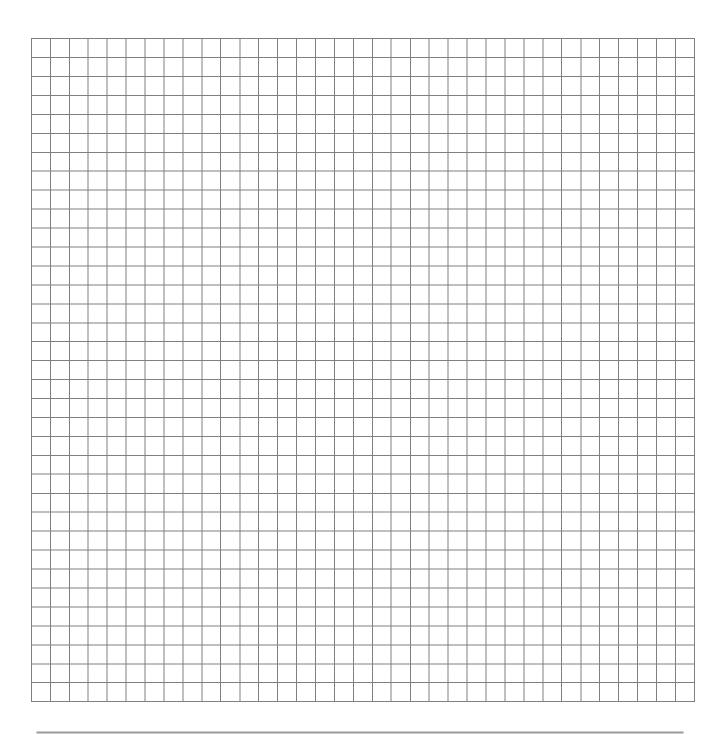
Name:

																							_
																							\dashv
							_	_	_	_			_			_		_			\dashv	\dashv	\dashv
							_	_	_	_			_		-	_	-	-		-	\dashv	\dashv	\dashv
																		_				\dashv	\dashv
																						\dashv	\dashv
																		_				\dashv	\dashv
																						\dashv	\dashv
																						\dashv	-
																						\dashv	\neg
																						\neg	\neg
																						\exists	
																						\exists	\neg
																						_	
																						\dashv	_
							_	_	_	_			_			_		_				\dashv	_
																						\dashv	_
							_	_	_	_			_			_		_			\dashv	\dashv	\dashv
																		_				\dashv	\dashv
																		_				\dashv	-
							_	_	_	_			_	\vdash	-	_	-	-		-	\dashv	\dashv	\dashv
																						\dashv	\dashv
																						\dashv	\dashv
																						\dashv	
							\neg	\neg	\neg	\neg			\neg	Н	\Box	\neg	\Box	\dashv	Н	\Box		\dashv	\dashv
														П					Н			\dashv	\dashv
																						\dashv	\neg
																						\exists	\neg
														Ш					Ш			\Box	_
																						$ \bot $	
<u> </u>														Щ	Щ		Щ		Щ	Щ		$ \bot $	
														Щ					Щ			\dashv	
														Щ					Щ			\dashv	
																						\dashv	
<u> </u>							_	_	_	_			_	Щ		_		_	Щ			\dashv	_

SNR:

Kursbezeichnung:

Name:


Teil 1 - Aufgabe 3 - zum Themenbereich Stochastik

a Die binomialverteilte Zufallsgröße X hat die Parameter $n_x = 4$ und p_x sowie den Erwartungswert 2. Bestimmen Sie die Wahrscheinlichkeit P(X = 4).

BE 2

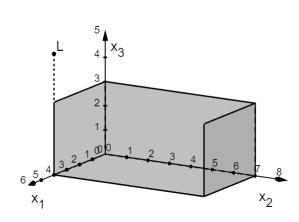
b Die binomialverteilte Zufallsgröße Y hat den Parameter n_Y und $p_Y=0,2$. Formulieren Sie dazu eine Aufgabenstellung, die sich mithilfe des Ansatzes $1-0,8^{n_Y}<0,3$ lösen lässt.

3

Kursbezeichnung:

Name:

					1																					
										-													-		\dashv	\vdash
																										Ш
																									\dashv	\vdash
-										_													_		-	\square
																									\neg	\Box
-		_							-	-			_					\vdash	-			-	-	-	\dashv	$\vdash\vdash$
\vdash	\vdash	-					\vdash	\vdash	\vdash	-		H	-	H	\vdash	\vdash		\vdash	\vdash			\vdash	-	-	\dashv	
_		_											_					Ш								Щ
L		L		L	L								L												_	
																									\Box	
									\vdash	\neg								\vdash	\vdash			\vdash	\neg	\dashv	\dashv	
_		<u> </u>	_	_	_	_			\vdash	_			<u> </u>					$\vdash\vdash$	\vdash		_	\vdash	_	-	\dashv	
									Ш									Ш	Ш			Ш				
																		\Box							\neg	
		_							\vdash	-			_					$\vdash\vdash$	$\vdash\vdash$			$\vdash\vdash$	-	-	\dashv	
																									\dashv	
_									-	_								\vdash	-			-	_		\blacksquare	
																									\neg	
										-								\vdash					-		\dashv	
																		Ш								
									\vdash	-								\vdash	\vdash			\vdash	-	\dashv	\dashv	
	\vdash	_					\vdash					\vdash	_	\vdash	\vdash	\vdash		$\vdash\vdash$						_	\dashv	<u> </u>
																		П							\neg	
									\vdash	-								$\vdash\vdash$	\vdash			\vdash	-		\dashv	
			<u> </u>	_	_	<u> </u>			Ш									Ш			<u> </u>					
		L	L	L	L	L				_			L								L		_	_	_	
									\vdash									\vdash	\vdash			\vdash		\dashv	\dashv	
	\vdash	_					\vdash					\vdash	_	\vdash	\vdash	\vdash		$\vdash\vdash$						_	\dashv	
																		Ш								
]]		ļ	
																		Н						\neg	\neg	
	\vdash	-					\vdash	\vdash	\vdash			\vdash	-	\vdash	\vdash	\vdash		$\vdash\vdash$	\vdash			\vdash		-	\dashv	
																		Ш								
																									\Box	
_		<u> </u>	\vdash	_	_	\vdash			\vdash	-			<u> </u>					$\vdash\vdash$	\vdash		\vdash	\vdash	-	-	\dashv	
																		Ш								
		L	L	L	L	L				_			L								L		_	_	_	
																										\Box

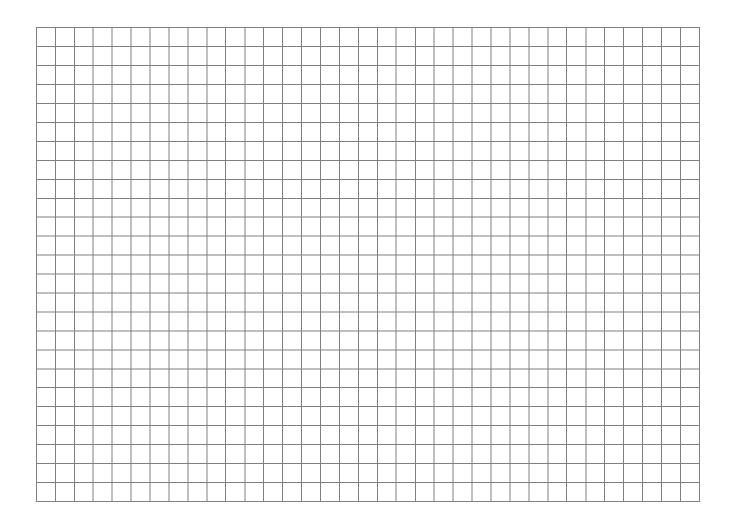

SNR:

Kursbezeichnung:

Name:

Teil 1 - Aufgabe 4 - zum Themenbereich Analytische Geometrie

Die Abbildung zeigt in einem Koordinatensystem modellhaft eine 7 m breite Theaterkulisse. Die linke Seitenwand liegt im Modell in der x_1x_3 -Ebene und ist 4 m tief und 3 m hoch; die rechte Seitenwand ist dazu parallel. Ein auf der Bühne stehender Gegenstand wird von einer Lampe beleuchtet. Die Lampe wird im Modell durch den Punkt L(4|0|5) dargestellt, die Spitze des Gegenstands durch den Punkt L(4|0|5) (nicht abgebildet).



Ermitteln Sie eine Gleichung der Geraden durch die Punkte L und S. Zeigen Sie rechnerisch, dass der Schatten der Spitze auf der rechten Seitenwand der Bühne liegt.

5

BE

5

MAT-GK-Teil1-H Aufgabe 4 Seite 1 von 2

Kursbezeichnung:

Name:

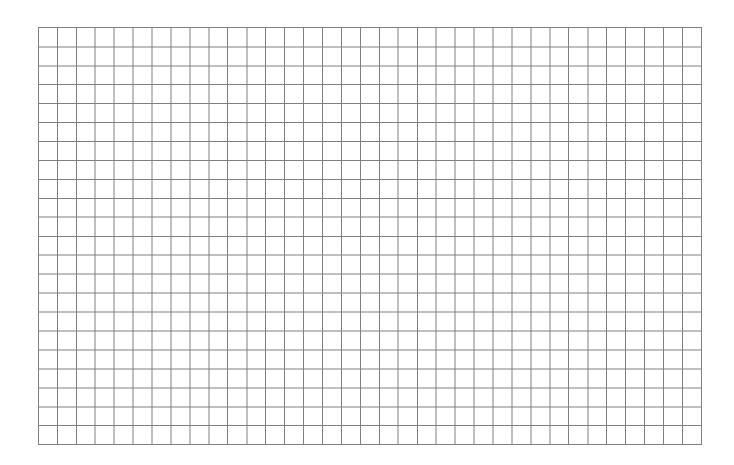
																							\neg										\neg
\vdash	\vdash	-	-	-	\vdash	-	\vdash	-		\dashv	\dashv	\dashv	-	-	-	-	\dashv	\dashv	\dashv	-	-	-	\dashv	\dashv	\dashv	\dashv	-		-	\rightarrow	\dashv	\rightarrow	\dashv
																																\neg	
				_										_							_	-	\dashv	-	\dashv	\dashv					-	\dashv	
																							\neg			\neg						\neg	\neg
-	\vdash		-	_	\vdash		\vdash			\dashv	\rightarrow	\dashv	-	_	-	-	\dashv	\rightarrow	\rightarrow	-	_	\rightarrow	\dashv	\dashv	\rightarrow	\dashv	-		-	\rightarrow	\rightarrow	\rightarrow	-
																									\dashv							\dashv	\neg
<u> </u>	Ш		-		\vdash		\vdash								-							\rightarrow	_	_	\rightarrow	_	-		-	\rightarrow	\rightarrow	\rightarrow	
																							\neg	\neg	\neg	\neg				\neg		\neg	
	\vdash	\vdash	\dashv	-	\vdash	\vdash	\vdash	\vdash	\vdash				\dashv	-	\dashv	\dashv				\dashv	-	+	\dashv	\dashv	\dashv	\dashv	\dashv	\vdash	\dashv	\dashv	\dashv	+	-
_	Ш				Щ		Щ			_		_					_					_	_	_	_	_		\square		_	_	\dashv	
																							\neg							\neg	\neg	\neg	\neg
\vdash	Н	\vdash	\dashv		\vdash	\vdash	\vdash	\vdash	\vdash				\dashv		\dashv	\dashv				\dashv		+	\dashv	\dashv	\dashv	-	\dashv	\vdash	\dashv	\dashv	\dashv	\dashv	-
_	Ш	Ш			Ш	Ш	Ш	Ш	Ш													_			_							\dashv	
																							\neg										\neg
\vdash	\vdash	\vdash	\dashv	-	\vdash	\vdash	\vdash	\vdash	\vdash	-	-	-	\dashv	-	\dashv	\dashv	-	-	-	\dashv	-	+	\dashv	\dashv	\dashv	-	\dashv	\vdash	\dashv	\dashv	\dashv	\dashv	-
																									\neg							\neg	
-				_										_							_	-	\dashv	-	\dashv	\dashv					-	\dashv	
																						\neg			\neg							\neg	
				_										_							_	-	\dashv	-	\dashv	\dashv					-	\dashv	
																						\neg			\neg							\neg	
				_										_							_	-	\dashv	-	\dashv	\dashv					-	\dashv	
	П																						\neg		\dashv					\neg	\neg	\dashv	\neg
\vdash	\vdash	\vdash		-	\vdash	\vdash	\vdash	\vdash	\vdash				-	-		-				-	-	+	-	\dashv	\dashv	-		\vdash		\dashv	\dashv	\dashv	-
_	Ш				Ш		Ш																										
	П																						\neg		\neg					\neg	\neg	\neg	\neg
	\vdash	\vdash	\dashv	-	$\vdash\vdash$	\vdash	$\vdash\vdash$	\vdash	$\vdash\vdash$	\dashv	\dashv	\dashv	\dashv	-	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	-	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	\vdash	\dashv	\dashv	\dashv	\dashv	-
	Ш				Ш		Ш																										
	П																						\neg		\dashv					\neg	\neg	\dashv	\neg
\vdash	Н	\vdash	\dashv		\vdash	\vdash	\vdash	\vdash	\vdash				\dashv		\dashv	\dashv				\dashv		+	\dashv	\dashv	\dashv	-	\dashv	\vdash	\dashv	\dashv	\dashv	\dashv	-
	Ш				Ш		Ш																										
																							\neg		\neg					\neg	\neg	\neg	\neg
\vdash	Н	\vdash	\dashv		\vdash	\vdash	\vdash	\vdash	\vdash				\dashv		\dashv	\dashv				\dashv		+	\dashv	\dashv	\dashv	-	\dashv	\vdash	\dashv	\dashv	\dashv	\dashv	-
	Ш	Ш			Ш	Ш	Ш	Ш	Ш														_		_					_	_	$ \bot $	
																						\neg			\dashv							\dashv	\neg
\vdash	Н	\vdash	\dashv	-	\vdash	\vdash	\vdash	\vdash	\vdash	-	-	-	\dashv	-	\dashv	\dashv	-	-	-	\dashv	-	+	\dashv	\dashv	+	-	\dashv	\vdash	\dashv	\dashv	\dashv	\dashv	\dashv
	Ш				Ш		Ш																										
	П																					\neg			\dashv							\dashv	\neg
\vdash	\vdash	\vdash	\dashv	-	$\vdash\vdash$	\vdash	$\vdash\vdash$	\vdash	\vdash	\dashv	\dashv	\dashv	\dashv	-	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	-	+	\dashv	\dashv	\dashv	\dashv	\dashv	\vdash	\dashv	\dashv	\dashv	\dashv	-

Kursbezeichnung:

Name:

Teil 1 - Aufgabe 5 - zum Themenbereich Lineare Algebra

ΒE


Gegeben ist die Matrix $A = \begin{pmatrix} 0 & \frac{1}{2} & 0 \\ 0 & 0 & -\frac{1}{5} \\ -10 & 0 & 0 \end{pmatrix}$.

 $\textbf{a} \ \ \text{Die Matrix} \ \ A^{-1} = \begin{pmatrix} 0 & 0 & c \\ a & 0 & 0 \\ 0 & b & 0 \end{pmatrix} \ \text{ist die inverse Matrix zu A. Geben Sie die Werte von a, b und c}$

2

an.

b Es gibt Vektoren $\vec{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ mit $\vec{v} \neq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, für die $A \cdot \vec{v} = \vec{v}$ gilt. Ermitteln Sie einen dieser Vektoren.

SNR:

Kursbezeichnung:

Name:

Ш																									
\vdash	\vdash	\vdash	\vdash		H	-	\vdash	\vdash	\vdash	\vdash	-	-	\vdash	\vdash	-	\vdash	\vdash	Н	\vdash	\vdash			\vdash	\dashv	\dashv
Ш																								\blacksquare	\square
Н																								\neg	\neg
\vdash	-		\vdash			_			\vdash	-	_	_	\vdash	-	-	-	-	\vdash	-					-	$\vdash\vdash$
Ш			Ш						Ш				Ш					Ш						_	
Н	-								\vdash	-				-	-	-	-	Н	-					\dashv	\neg
Ш						_			\blacksquare		_	_			_										\vdash
																									,]
\Box			Н						Н				Н					П						\dashv	\neg
\vdash	\vdash	\vdash	$\vdash\vdash$			<u> </u>	\vdash		$\vdash\vdash$	\vdash	<u> </u>	<u> </u>	$\vdash\vdash$	\vdash	-	\vdash	\vdash	$\vdash\vdash$	\vdash	\vdash			\vdash	\dashv	\vdash
Ш	Ш		Ш						Ш	Ш			Ш	Ш		Ш	Ш	Ш	Ш	Щ			Щ	\square	لــــا
																									,
\vdash	\vdash		\vdash						H	\vdash			\vdash	\vdash	\neg	\vdash	\vdash	Н	\vdash	\vdash			\vdash	\dashv	-
\vdash	\vdash	\vdash	$\vdash\vdash$			_	\vdash		$\vdash\vdash$	\vdash	_	_	$\vdash\vdash$	\vdash	_	\vdash	\vdash	Н	\vdash	\vdash			\vdash	\dashv	\square
Ш			Ш						Ш				Ш					Ш		Ш			Ш	\square	
																									,
\vdash	-		\vdash			_			\vdash	-	_	_	\vdash	-	-	-	-	Н	-					\dashv	-
															_									\dashv	
																									\neg
\vdash			\vdash						\vdash				\vdash		-									\dashv	\square
Ш																								_	لــــا
	-		\vdash						\vdash	-			\vdash				-	Н	-					\neg	_
\vdash	\vdash	<u> </u>	$\vdash\vdash$			<u> </u>	<u> </u>		$\vdash\vdash$	\vdash	<u> </u>	<u> </u>	$\vdash\vdash$	\vdash	-	\vdash	\vdash	$\vdash\vdash$	\vdash					\dashv	
Ш	Ш		Ш						Ш	Ш			Ш				Ш	Ш	Ш					\square	
\vdash	\vdash	\vdash	\vdash				\vdash		\vdash	\vdash			\vdash	\vdash		\vdash	\vdash	Н	\vdash	\vdash			\vdash	\dashv	-
Н	\vdash		$\vdash\vdash$			_			$\vdash\vdash$	\vdash	_	_	$\vdash\vdash$	\vdash	_	\vdash	\vdash	$\vdash \vdash$	\vdash					\dashv	
Ш			Ш						Ш				Ш					Ш						\square	
\vdash	\vdash	\vdash	\vdash				\vdash		\vdash	\vdash			\vdash	\vdash		\vdash	\vdash	Н	\vdash	\vdash			\vdash	\dashv	-
$\vdash\vdash$	\vdash	<u> </u>	$\vdash\vdash$			<u> </u>	<u> </u>		$\vdash\vdash$	\vdash	<u> </u>	<u> </u>	$\vdash\vdash$	\vdash	-	\vdash	\vdash	$\vdash\vdash$	\vdash					\dashv	
Ш																		Ш							
																									, 1
																								\Box	
\vdash			\vdash			-			\vdash		-	-	\vdash					\vdash						\dashv	-
Ш			Ш			_			Ш		_	_	Ш											\dashv	Ш
																								П	
\vdash	\vdash		\vdash						\vdash	\vdash			\vdash	\vdash	\neg	\vdash	\vdash	\vdash	\vdash	\vdash			\vdash	\dashv	
$\vdash\vdash$	\vdash		$\vdash\vdash$			<u> </u>			$\vdash\vdash$	\vdash	<u> </u>	<u> </u>	$\vdash\vdash$	\vdash	_	\vdash	\vdash	$\vdash\vdash$	\vdash	\square			\square	\dashv	
Ш			Ш						Ш				Ш					Ш		Ш			Ш	\square	
П																								\Box	\neg
		ш					ш	\Box	ш				ш					ш						$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	

Kursbezeichnung:

Name:

Schriftliche Abiturprüfung 2020 im dritten Prüfungsfach

Grundkurs Mathematik (TR)

Dienstag, 5. Mai 2020, 9:00 Uhr

Unterlagen für die Prüfungsteilnehmerinnen und -teilnehmer

- Teil 2: Aufgaben mit Hilfsmitteln -

Allgemeine Arbeitshinweise

- Tragen Sie bitte oben rechts auf diesem Blatt und auf den nachfolgenden Aufgabenblättern die Schulnummer, die schulinterne Kursbezeichnung und Ihren Namen ein.
- Schreiben Sie auf alle Entwurfsblätter (Kladde) und die Reinschrift Ihren Namen.
- Versehen Sie Ihre Reinschrift mit Seitenzahlen.

Fachspezifische Arbeitshinweise

- Die Arbeitszeit beträgt 180 Minuten.
- Erlaubte Hilfsmittel: Nicht programmierbarer wissenschaftlicher Taschenrechner, Formelsammlung, Zeichengerät, Rechtschreiblexikon.

Aufgaben

- Sie erhalten drei Aufgaben zur Bearbeitung.
- Überprüfen Sie bitte zu Beginn die Vollständigkeit der vorgelegten Aufgaben (Anzahl der Blätter, Anlagen, ...).
- Vermerken Sie in Ihrer Reinschrift, welche Aufgabe Sie jeweils bearbeiten.

MAT-GK-TR-H Hinweise Seite 1 von 1

Kursbezeichnung:

Name:

Teil 2 - Aufgabe 1 - zum Themenbereich Analysis

CO₂-Konzentration

BE

5

7

1 Die Funktion f ist eine in IR definierte ganzrationale Funktion dritten Grades.

Der Graph G_f der Funktion f geht durch den Punkt A(0|0) und hat dort die Steigung 0. Im Punkt B(3|-2) geht G_f ohne Knick in die Gerade mit der Funktionsgleichung

$$y = -4x + 10$$

über.

a Bestimmen Sie eine Funktionsgleichung von f.

(Kontrolllösung: $f(x) = -\frac{8}{27}x^3 + \frac{2}{3}x^2$)

b Der Graph G_f ist in der Abbildung 1 eingezeichnet.

G_f hat seinen Tiefpunkt im Ursprung. Bestimmen Sie die Koordinaten seines Hochpunkts.

Geben Sie in Abbildung 1 die Skalierung der Achsen an.

Die Graphen kubischer Funktionen sind symmetrisch zu ihrem Wendepunkt. Geben Sie die Koordinaten des Wendepunkts von G_f an.

Berechnen Sie die Steigung von Gf im Wendepunkt.

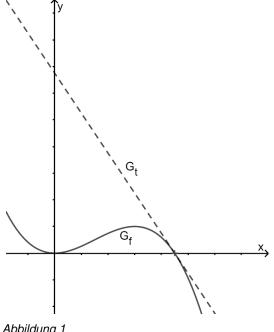


Abbildung 1

Die Nullstellen der Funktion f sind 0 und $\frac{9}{4}$. Die Tangente G_t an den Graphen G_f im Punkt $\left(\frac{9}{4}|0\right)$ hat die Funktionsgleichung

$$t(x) = -\frac{3}{2}x + \frac{27}{8}$$
.

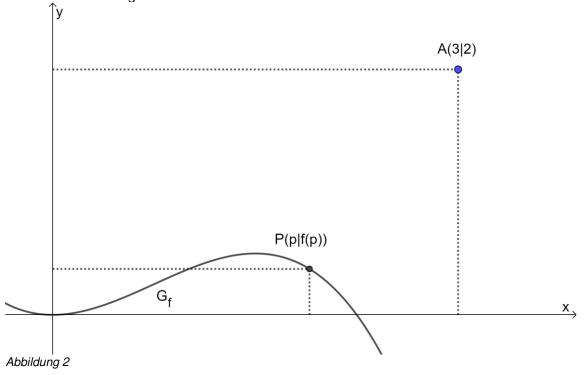
 ${f c}$ Die Tangente ${f G}_{t}$, der Graph ${f G}_{f}$ und die y-Achse schließen im ersten Quadranten ein Flächenstück ein (siehe Abbildung).

Berechnen Sie die Größe dieses Flächenstücks.

 $\textbf{d} \;\; \text{Es gibt eine andere Tangente an den Graphen} \;\; \textbf{G}_{\text{f}} \,, \, \text{die parallel zur Tangente} \;\; \textbf{G}_{\text{t}} \, \text{ist.}$

Ermitteln Sie deren Funktionsgleichung.

3


Kursbezeichnung:

Name:

e Gegeben ist ein Punkt P(p | f(p)) auf dem Graphen von f sowie der Punkt A(3 | 2) (siehe Abbildung 2).

Ermitteln Sie mit Hilfe von Abbildung 2 einen Term für die Berechnung des Abstandes von A und P und **veranschaulichen** Sie ihr Vorgehen in der Abbildung 2. Der Term braucht hierbei nicht vereinfacht zu werden.

Es gibt einen Punkt Q auf dem Graphen G_f , der von A den geringsten Abstand hat. **Erläutern** Sie ein Verfahren, wie dieser Punkt bestimmt werden kann. Rechnungen sollen dabei nicht ausgeführt werden.

Kursbezeichnung:

Name:

2 In einer Messstation wird seit 1958 kontinuierlich die CO₂-Konzentration in der Luft gemessen, die in ppm (parts per million) angegeben wird. Die Tabelle gibt für die Jahre 1960, 1985 und 2010 jeweils den Jahresdurchschnitt der Messwerte an.

Jahr	1960	1985	2010
CO ₂ -Konzentration	0.4.7	0.40	000
in ppm (Jahresdurchschnitt)	317	346	380

Die Jahresdurchschnitte haben sich im Zeitraum von 1960 bis 1985 in guter Näherung exponentiell entwickelt. Die Funktion h mit

$$h(t) = c \cdot e^{k \cdot t} , \ t \in IR ,$$

modelliert diesen Sachzusammenhang in diesem Zeitraum, wobei t die Zeit in Jahren nach 1960 ist und h(t) die CO_2 -Konzentration in ppm.

a Bestimmen Sie Parameter c und k.

4

Berechnen Sie unter der Annahme, dass sich das exponentielle Wachstum nach 1985 in gleicher Weise fortgesetzt hat, den Jahresdurchschnitt für das Jahr 2010. **Vergleichen** Sie diesen Wert mit dem zugehörigen Wert aus der Tabelle und formulieren Sie das Ergebnis Ihres Vergleichs im Sachzusammenhang.

Die Funktion h kann näherungsweise durch

$$h(t) = 317 \cdot 1,004^{t}$$

dargestellt werden. Verwenden Sie ab hier diese Funktionsgleichung.

b Geben Sie für die Funktion h den ungefähren prozentualen Zuwachs pro Jahr in Prozent an.

3

Berechnen Sie nach diesem Modell den Jahresdurchschnitt der CO₂-Konzentration für das Jahr 2020.

Ein Standort, der mit der Messstation von oben vergleichbar ist, unterscheidet sich nur durch eine einzelne Fabrik, die konstant CO_2 ausstößt. Die Jahresdurchschnitte der CO_2 -Konzentration dieser Messstation sind jeweils um 20 ppm höher als bei der zuerst betrachteten Messstation. **Geben** Sie einen Funktionsterm **an**, der die Jahresdurchschnitte der zweiten Messstation modelliert.

c Für eine Stammfunktion H von h gilt:

2

$$\frac{H(50) - H(25)}{25} \approx 368,3 \ .$$

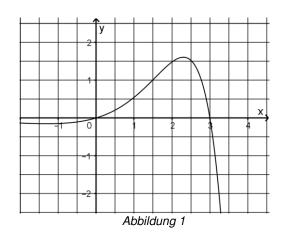
Interpretieren Sie den Wert 368,3 im Sachzusammenhang.

Kursbezeichnung:

Name:

Teil 2 - Aufgabe 2 - zum Themenbereich Analysis

 TR


Fahrradweg

ΒE

Die Abbildung 1 zeigt den Graphen der Funktion f mit

$$f(x) = 0, 1 \cdot x \cdot (3 - x) \cdot e^{x}$$

und $x \in IR$.

1 Für die erste Ableitungsfunktion f' von f gilt

$$f'(x) = -0.1 \cdot (x^2 - x - 3) \cdot e^x$$
.

a Geben Sie die Nullstellen des Graphen von f **an** und **berechnen** Sie die Koordinaten seines Hochpunkts.

3

4

b Geben Sie das Verhalten des Graphen von f für $x \to +\infty$ an.

Beschreiben Sie den Verlauf des Graphen von f für $X \to -\infty$ und **begründen** Sie Ihre Angabe anhand des Funktionsterms von f.

Eine der Tangenten an den Graphen von f verläuft durch den Punkt (0 | 1/2).
 Skizzieren Sie diese Tangente in die Abbildung 1 ein und geben Sie eine Gleichung der eingezeichneten Geraden an.

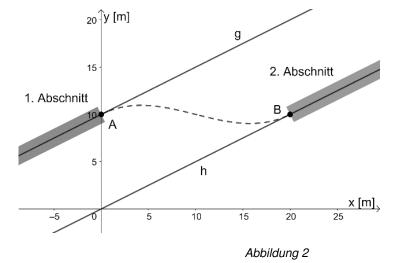
3

d Zeigen Sie, dass die in IR definierte Funktion F mit $F(x) = -0.1 \cdot \left(x^2 - 5x + 5\right) \cdot e^x$

4

eine Stammfunktion von f ist.

3


Berechnen Sie $\int_{0}^{3} f(x) dx$ und **veranschaulichen** Sie den Wert des Integrals in Abbildung 1.

Kursbezeichnung:

Name:

- **f Begründen** Sie ohne zu rechnen, dass es eine positive Zahl a gibt, für die $\int_0^a f(x)dx = 0$ gilt.
- 3
- **g Begründen** Sie anhand des Funktionsgraphen von f, dass der Graph jeder Stammfunktion von f einen Tiefpunkt hat, der auf der y-Achse liegt. **Bestimmen** Sie diejenige Stammfunktion für die sich dieser Tiefpunkt im Koordinaten-
- 5
- **Bestimmen** Sie diejenige Stammfunktion, für die sich dieser Tiefpunkt im Koordinatenursprung befindet.
- 2
- **h** Gegeben ist eine in IR definierte Funktion g mit $g(x) = 0, 1 \cdot x \cdot (x b) \cdot e^x$ mit $b \in IR, b > 0$. Der Graph von g und der Graph von f bilden eine Figur, die bezüglich der x-Achse symmetrisch ist. **Bestimmen** Sie b.
 - _ _
- **2** Zwei Abschnitte eines Fahrradweges verlaufen parallel und sollen verbunden werden. Eine Planskizze ist in Abbildung 2 zu sehen. Eine Längeneinheit entspricht einem Meter.
 - 5
 - Der erste Abschnitt verläuft entlang einer Geraden g und endet in Punkt A(0|10). Der zweite Abschnitt beginnt in Punkt B(20|10) und verläuft entlang einer Geraden h, die auch den Koordinatenursprung enthält.

Bestimmen Sie eine ganzrationale Funktion dritten Grades, die den Verlauf des Verbindungsstücks beschreibt. Dabei sollen die Übergänge in Punkt A und in Punkt B knickfrei sein.

Kursbezeichnung:

Name:

Teil 2 - Aufgabe 3 - zum Themenbereich Stochastik

 TP

Zufriedenheit von Beschäftigten

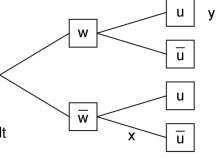
BE

2

3

2

3


In einem großen Unternehmen sind 29 % der Beschäftigten weiblich.

- 1 Es werden 40 Beschäftigte zufällig ausgewählt. Die Anzahl der weiblichen Beschäftigten unter den ausgewählten Beschäftigten kann durch eine binomialverteilte Zufallsgröße X beschrieben werden.
 - **a Berechnen** Sie die Wahrscheinlichkeit dafür, dass mindestens 12 der ausgewählten Beschäftigten weiblich sind.
 - **b Beschreiben** Sie die Bedeutung der folgenden mathematischen Aussage im Sachzusammenhang:

$$\sum_{x=0}^{10} {40 \choose x} \cdot 0,29^x \cdot 0,71^{40-x} \approx 0,36$$

- **c Bestimmen** Sie die Wahrscheinlichkeit dafür, dass unter den 40 ausgewählten Beschäftigten die Anzahl derjenigen, die nicht weiblich sind, dreimal so groß ist wie die Anzahl der weiblichen.
- d Begründen Sie ohne Berechnung von Wahrscheinlichkeiten, dass die Wahrscheinlichkeitsverteilung von X für 11 oder 12 den größten Wert hat.
- 2 Unter allen Beschäftigten wurde eine Befragung zur Zufriedenheit am Arbeitsplatz durchgeführt. Dabei ergab sich, dass 3,5 % der weiblichen und 10,5 % der nicht weiblichen Beschäftigten unzufrieden sind. Unter allen Beschäftigten wird eine Person zufällig ausgewählt.

Das abgebildete Baumdiagramm stellt den Sachverhalt dar.

- **a Ermitteln** Sie die Werte von x und y.
- **b Erläutern** Sie die Bedeutung dieser beiden Werte im Sachkontext.
- Die ausgewählte Person ist an ihrem Arbeitsplatz unzufrieden.
 Bestimmen Sie die Wahrscheinlichkeit dafür, dass sie nicht weiblich ist.
- **d** Für eine Abteilung des Unternehmens ergab die Befragung, dass 10 % der nicht weiblichen Beschäftigten und 4 % der weiblichen an ihrem jeweiligen Arbeitsplatz unzufrieden sind. Unter allen Beschäftigten dieser Abteilung ist der Anteil der unzufriedenen Beschäftigten, die nicht weiblich sind, fünfmal so groß wie der Anteil der unzufriedenen Beschäftigten, die weiblich sind.

3

3

_

3

5

J

Seite 1 von 2

SNR:

Kursbezeichnung:

Name:

Bestimmen Sie für diese Abteilung den Anteil der weiblichen Beschäftigten.

Bestimmen Sie für diese Abteilung zudem den Anteil der Beschäftigten, die weiblich und zufrieden sind.

Kursbezeichnung:

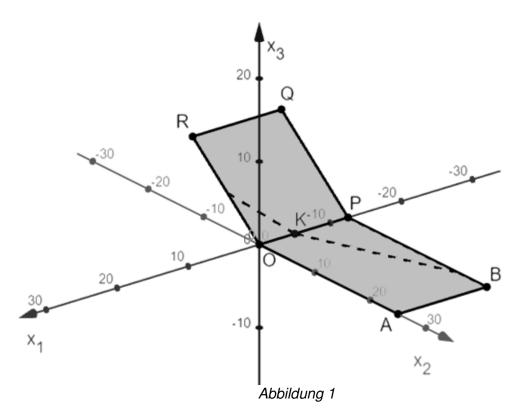
Name:

Teil 2 - Aufgabe 4 - zum Themenbereich Analytische Geometrie

 TR

Minigolf

BE


Das Viereck OPQR mit den Eckpunkten

$$O(0|0|0)$$
,
 $P(-12,5|0|0)$,
 $Q(-12,5|-12|9)$ und

R(0|-12|9)

stellt modellhaft die geneigte Fläche einer Minigolfbahn dar (siehe Abbildung 1).

Im verwendeten Koordinatensystem beschreibt die x_1x_2 -Ebene den horizontalen Untergrund; eine Längeneinheit entspricht 10 cm in der Realität.

- **a Begründen** Sie, dass die Strecke \overline{RQ} parallel zur x_1 -Achse verläuft und dass das Viereck OPQR ein Rechteck ist.
- **b Berechnen** Sie den Flächeninhalt der geneigten Fläche der Minigolfbahn.
- **c** Die Eckpunkte des Rechtecks OPQR liegen in der Ebene E. **Ermitteln** Sie eine Parametergleichung der Ebene E.

3

2

2

MAT-GK-TR-Teil 2-H Aufgabe 4 Seite 1 von 2

Kursbezeichnung:

Name:

Die Ebene E kann auch durch die Koordinatenform $E: 3x_2 + 4x_3 = 0$ beschrieben werden.

d Berechnen Sie die Größe des Winkels, den die geneigte Fläche der Bahn mit dem Untergrund einschließt.

3

e Das Loch der Minigolfbahn ist in der geneigten Fläche in einer Höhe von 60 Zentimetern über dem horizontalen Untergrund angebracht. Das Loch wird im Modell mit dem Punkt L bezeichnet und hat von R und Q den gleichen Abstand.

3

Bestimmen Sie die Koordinaten von L.

(*Kontrolllösung:* L(-6,25 | -8 | 6))

f Die geneigte Fläche der Minigolfbahn soll durch eine Stütze abgestützt werden.

6

Das untere Ende der Stütze soll am horizontalen Untergrund verankert werden. Im Modell entspricht der Punkt $U(-6 \mid -10 \mid 0)$ dem unteren Ende der Stütze.

Das obere Ende der Stütze soll an der geneigten Fläche der Minigolfbahn befestigt werden. Im Modell wird dieser Punkt S genannt.

Die Richtung der Stütze verläuft im Modell entlang der Geraden

$$g: \vec{x} = \begin{pmatrix} -6 \\ -10 \\ 0 \end{pmatrix} + r \cdot \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}, r \in \mathbb{R}.$$

Bestimmen Sie den oberen Punkt S der Stütze und **entscheiden** Sie, ob zwischen dem oberen Ende der Stütze (S) und der Mitte des Lochs (L) ein Mindestabstand von 5 Zentimetern besteht.

(Kontrolllösung: S(-6|-8|6))

g Die Abschlagsfläche auf dem horizontalen Untergrund wird in der Abbildung durch das Rechteck ABPO dargestellt.

5

Der Ball wird im Punkt $T(t_1|20|t_3)$ auf dieser Fläche abgeschlagen und rollt dann zunächst entlang einer geraden Linie zu dem Punkt K(-5|0|0).

In Punkt K trifft der Ball auf die geneigte Fläche der Minigolfbahn und rollt anschließend in Richtung des Vektors

$$\vec{v} = \begin{pmatrix} 3 \\ -8 \\ 6 \end{pmatrix}$$

auf die geneigte Fläche. Der Weg ist durch die gestrichelte Linie in der Abbildung 1 angedeutet.

Ermitteln Sie die Koordinaten des Abschlagspunktes T.

Kursbezeichnung:

Name:

Teil 2 - Aufgabe 5 - zum Themenbereich Lineare Algebra

 TR

Säugetiere

BE

Betrachtet wird die Entwicklung von Populationen weiblicher Säugetiere derselben Art. Nur im ersten Lebensjahr sind die Tiere unreif, im zweiten Lebensjahr werden sie als jung, anschließend als alt bezeichnet. Die Zusammensetzungen solcher Populationen können durch

Vektoren der Form $\begin{pmatrix} u \\ j \\ a \end{pmatrix}$ dargestellt werden, wobei u die Anzahl der unreifen, j die Anzahl der

jungen und a die Anzahl der alten Säugetiere bezeichnet.

1 Die Entwicklung einer solchen Population von einem Jahr n zum nächsten kann modell
(0 1 2)

haft durch die Gleichung $\overrightarrow{v_{n+1}} = L * \overrightarrow{v_n}$ mit $L = \begin{pmatrix} 0 & 1 & 2 \\ 0.75 & 0 & 0 \\ 0 & 0.8 & 0.7 \end{pmatrix}$ beschrieben werden.

Zu Beobachtungsbeginn besteht die Population aus 24 unreifen, 46 jungen und 6 alten Tieren.

a Beschreiben Sie die Bedeutung der Einträge 2 und 0,8 von L im Sachzusammenhang.

2

3

b Bestimmen Sie L² und geben Sie die Rechnung an, aus der sich in L² der Eintrag in der ersten Zeile und dritten Spalte ergibt. Ermitteln Sie den prozentualen Anteil der unreifen Tiere, die sich in zwei Jahren erst zu jungen und dann zu alten Tieren weiterentwickeln.

3

c Berechnen Sie die Zusammensetzung der Population zwei Jahre nach Beobachtungsbeginn.

Zeigen Sie, dass das Modell zur Beschreibung der Entwicklung der Population ein Jahr vor Beobachtungsbeginn nicht geeignet ist.

Bei bestimmten Zusammensetzungen der Population wachsen die Anzahlen der Tiere in den drei Entwicklungsstadien von einem Jahr zum nächsten mit dem Faktor 1,5.

d Bestimmen Sie diese Zusammensetzungen.

4

2 Die Entwicklung einer anderen Population von einem Frühjahr n zum nächsten kann durch die Gleichung $\overrightarrow{w_{n+1}} = N*M*\overrightarrow{w_n}$ dargestellt werden. Dabei beschreibt

 $M = \begin{pmatrix} 0 & 1 & 2 \\ \frac{4}{5} & 0 & 0 \\ 0 & \frac{9}{10} & \frac{4}{5} \end{pmatrix} \text{ die Entwicklung vom Frühjahr zum folgenden Herbst und } N = \begin{pmatrix} k & 0 & 0 \\ 0 & \frac{5}{6} & 0 \\ 0 & 0 & \frac{5}{6} \end{pmatrix}$

mit 0 < k < 1 die Entwicklung vom Herbst zum folgenden Frühjahr.

Kursbezeichnung:

Name:

Es gilt N*M =
$$\begin{pmatrix} 0 & k & 2k \\ \frac{2}{3} & 0 & 0 \\ 0 & \frac{3}{4} & \frac{2}{3} \end{pmatrix}.$$

Zu Beobachtungsbeginn in einem Frühjahr besteht diese andere Population aus 225 unreifen, 225 jungen und 225 alten Tieren.

- **a Beschreiben** Sie die Bedeutung des Eintrags in der ersten Zeile und dritten Spalte der Matrix N*M im Sachzusammenhang. **Begründen** Sie den Wert dieses Eintrags mit der Entwicklung von Frühjahr bis Herbst und der Entwicklung von Herbst bis Frühjahr.
- **b Bestimmen** Sie für k = 0,8 die Zusammensetzung der Population zwei Jahre nach Beobachtungsbeginn.

Für einen Wert von k gibt es eine Zusammensetzung der Population mit 100 jungen und 225 alten Tieren, die sich von einem Frühjahr zum nächsten nicht verändert.

c Bestimmen Sie diesen Wert von k sowie die zugehörige Zusammensetzung.

Zu Beobachtungsbeginn in einem Frühjahr besteht die Population aus 225 unreifen, 225 jungen und 225 alten Tieren.

 $\label{eq:definition} \begin{tabular}{ll} \textbf{d} & \textbf{Bestimmen} & \text{Sie für } k=0,5 \ \ die \ Zusammensetzung \ der \ Population \ eineinhalb \ Jahre \ vor \ Beobachtungsbeginn. \end{tabular}$

24

5

2

2